
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   1206 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

Programming Models for Wireless Sensor 
Networks: Status, Taxonomy, Challenges, and 

Future Directions 
Abrar Alajlan and Khaled Elleithy  

 

Abstract— Wireless sensor networks (WSNs) play an important role in different application areas and have been successfully deployed in different 
computing environments. However, programming sensor network applications is extremely challenging as the applications becoming more complex. 
Some of these challenges are due to the sensors’ characteristics and others are due to the operating conditions of these sensors. Recently, researchers 
have proposed diverse programming approaches to mitigate these challenges and make WSN programming more flexible and much easier.   
This paper provides an extensive survey of the state-of-art in wireless sensor network programming models, focuses on a classification of programming 
levels in wireless sensor networks and capturing some likely programming challenges and research future directions.  

Index Terms— Sensor network,Wireless sensor network (WSN), Programming approaches, Macroprogramming, Wireless sensor networks taxonomy,  
Evaluation,Programming challenges. 

 

——————————      —————————— 

1 INTRODUCTION                                                                     
ypically, wireless sensor networks are composed of tiny 

embedded devices, each of which has radio transceiver to 
send or receive packets, processor to schedule and per-

form tasks, and power source to provide energy for the sensor 
[1].  Wireless sensor networks applications contain a large 
number of sensor nodes used to transmit and forward data 
between sensing nodes and the sink or base station [2]. Most 
often, WSN is utilized for the ease of deployment and en-
hanced flexibility of the network. Furthermore, it supports low 
cost dense monitoring of hostile environments as well as dis-
aster relief, medical care and military surveillance [3]. 

 The advantage of being able to place remote sensing 
nodes without having to run wires and the cost related to it is 
a huge gain. As the size of the circuitry of WSNs is becoming 
smaller along with the lower cost, the chances of their field of 
applications are significantly growing [4]. Most sensors, de-
pending on the requirements, are battery powered and hence 
conserving the energy of these sensors is very crucial. Several 
programming approaches have been proposed to assist WSNs 
programming. Two broad classes of WSNs programming 
models have been explored lately; local behavior and global 
behavior abstraction [5]. In local behavior abstractions, the 
application has to be programmed in details at the node-level 
and the programmers need to synchronize the program flow 
between the sensing nodes and maintain the routing code 
manually. In contrast, global behavior abstractions or equiva-
lently “High-level abstraction” has emerged as one of the most 
important aspects in sensor networks where it is applied to 
hide the internal operations from system programmers. The 
main objective behind high-level approach is the ability to 
treat a group of sensors or the entire network as one single 
unit rather than programming each node individually [6]. 
 The main contribution of this work is to provide an 
extensive survey on taxonomy of programming approaches 
for wireless sensor networks. Our work also captures the pro-

gramming requirements and uses them to evaluate each of the 
programming models. This paper also covers some open prob-
lems and challenges that need further investigation to make 
wireless sensor programming reaches its best level of perfor-
mance and makes it  highly usable and efficient.  

Section II, identifies the requirements for sensor network 
programming. Section III, provides a taxonomy on program-
ming approaches for WSNs. An in-depth look on each level of 
the programming approaches is presented in Section IV, V and 
VI. Analysis and evaluation of each model is discussed in Sec-
tion VII.  Section VII investigates research challenges and fu-
ture direction of programming WSNs. Conclusion in provided 
in Section IX. 

2 REQUIREMENTS FOR SENSOR NETWORK 
PROGRAMMING  

It is obvious that sensor networks can be used in multiple 
applications that can be deployed in diverse environments. 
Moreover, it is very easy to modify the internal functionality 
of sensor networks to perform different tasks to support many 
sensor network applications. In this section we discuss im-
portant requirements for sensor network programming. 

 
2.1 Scalability 
Many sensor network applications deploy hundreds or even 
thousands of nodes collaborating to achieve desired goal(s); 
thus, scalability is one of the major designing attributes in sen-
sor networks applications [7]. A scalable sensor network is 
representing the ability of the network to maintain its perfor-
mance even when the network size has changed [8]. In WSNs 
scalability can be defined in two terms; size and geography. 
Scalability with respect to size states that if the application 
works properly with a few nodes, it can perform well with 
thousands of nodes. On the other hand, the scalability with 
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respect to geography is defined as the ability to perform cor-
rectly in different geographical areas under different envi-
ronmental conditions [9]. Since we cannot predetermine the 
location of sensor nodes and we cannot assure the lifetime of 
sensor nodes, the programming model should help program-
mers in such a way to design scalable applications that are 
able to deliver accurate results [8].  The location information of 
distributed nodes needs to be known so as to exchange the 
sensed data between sensor nodes [10]. 

2.2 Localization 

In wireless sensor network applications there are hundreds of 
nodes deployed in some areas such as underwater, in the 
middle of desert, or in inaccessible terrains, so their locations 
are random and unknown [11] , [12]. Thus, localization in sen-
sor network, the determination of the geographical locations 
of sensors, is one of the important aspects for sensor network 
programming [13]. Many localization techniques have been 
proposed recently, either by deploying self-localized tech-
nique or by installing a Global Positioning System (GPS) de-
vice in each node to determine the exact location of the sensor 
node. Moreover, localizing algorithms can be classified into 
two groups:  

• Range-based algorithms: where each node is equipped 
with hardware measurements, so the location of each 
sensor node can be determined by calculating the 
distance of the selected sensor node with its 
neighboring nodes [14].  

• Range-free algorithms: where each node should 
determine its estimated location, and the ideal radio 
range of sensors.  

Consequently, range-based algorithms provide more infor-
mation compared to range-free algorithms; however, it is 
more expensive since there is some hardware measuring units 
attached to each sensor [15].  

 
2.3 Failure-Resilience 
Failure –resilience or (Fault-tolerance) is one of the most chal-
lenging requirements in programming wireless sensor net-
works [16]. Sensors are usually deployed in inaccessible ter-
rains where people cannot reach the sensor nodes at that 
place.  Some nodes might fail due to the resources limitation, 
hardware fault or it could be an intrusion from attackers.  The 
failed sensors may lead to inefficient functioning of the net-
work [17]. 
Thus, the system should keep performing properly even after 
unreliable communication, node failures, link failures, or una-
vailability of the network due to misbehaving nodes [18, 19]. 
Some techniques should be adapted to indicate that the node 
is not working in a proper way [20]. It could be done by moni-
toring the status of each node or using the power control tech-
nique [17, 19]. 
It is a very challenging requirement for the programmers to 
develop a sensor application that is resilient to failures and 
adaptive to the unexpected environmental changes which is 

too hard to provide error handling for every failure [18].   
 
2.4 Energy-Efficiency 
Energy efficiency is one of the most important issues in de-
signing sensor networks. The overall design of sensor net-
works should mainly emphasize on enhancing the perfor-
mance in terms of reduced power consumption.  The total life-
time of a battery-powered sensor networks is limited by the 
non-rechargeable battery's capacity and each sensor node is 
equipped with a limited computation processor to perform its 
task [21]. Energy efficiency is very important factor in devel-
oping WSNs applications especially for continuous monitor-
ing applications such as disaster monitoring, military surveil-
lance and remote patient monitoring, etc. [22],[23]. 
 
2.5 Collaboration 

Collaboration is another important characteristic of wireless 
sensor applications.  WSNs applications have been growing 
recently. These applications vary in size and the number of 
nodes, from large scale networks to the small ones. All nodes 
in one application need to communicate in such a way so that 
the data from these sensors are gathered and analyzed. Thus, 
collaboration between sensor nodes is essential for these sen-
sors to cooperatively and effectively work together to com-
plete the desired tasks [24] [25].  

Most of wireless sensor applications can be classified into 
two types: 

• Data collection type: where all data is collected and sent 
to the main server such as habitat and environmental 
monitoring applications.  

• Collaborative information processing: where the main 
task is to convert the data gained from multiple sensor 
nodes to higher-level information such as a tracking 
system applications [26]. 

Collaboration is not an independent requirement, it can sup-
port other requirements. For instance, collaboration between 
sensor nodes may reduce the failure-resilience where the sens-
ing process remains functional even after one node failed. 
Moreover, collaboration inside each sensor group may reduce 
data transmission which is in turn will reduce the consumed 
power [18].  

 
2.6 Time Synchronization 
Time-synchronization between nodes is another essential re-
quirement for sensor programming execution. Many WSNs 
applications such as tracking application and implementation 
of TDM requires a timer synchronization that is maintained at 
each sensor node [27]. 
Clock synchronization is a process used to ensure an accurate 
scheduling between nodes with no collision [28]. Moreover, 
WSNs have limited power as discussed earlier; therefore, 
time- synchronization technique helps to reduce the power 
consumption by passing some nodes off from time to time 
[29]. Clock synchronization in sensor nodes is generally re-
quired for many reasons such as: 
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• To support the coordination and collaboration between 

sensor nodes, 
• To manage the sleep and active state for each node [30], 
• To avoid collisions between sensor nodes as used in 

TDMA (Time division multiple access) [31], and  
• To reduce the differences between the clocks that is 

attached to each node at any time [32].  

3 PROGRAMMING APPROACHES FOR WSNS: A 
TAXONOMY 

In this section we present a taxonomy of the programming 
approaches for WSNs. Figure 1 depicts the entire taxonomy 
that categorize the wireless sensor network programming ap-
proaches into low-level and high-level programming models. 
Low-level approach mainly focuses on the use of an existing 
programming language to provide flexible controls over 
nodes. TinyOS with nesC as will discuss later, is one of the 
well-known examples that falls into this subclass [33], [34].  

Fig. 1. Taxonomy of programming approaches for WSNs . 
 
 The virtual machine that runs on each node is one of the in-
teresting approaches in this subclass. It is responsible for 
breaking tasks and dynamically distributing them to each 
node.  
High-level programming approach mainly focuses on simpli-
fying the collaboration between sensor nodes.  One approach 
is to divide the whole network into a set of groups and treat 
each group as a single entity which is called “Group-level ab-
stractions”. It helps the programmer to describe collaborative 
algorithms easily. This approach is further divided into physi-
cal groups and logical groups. In physical group, the network 
can be grouped based on the physical location of the node, 
whereas the logical group is based on the shared properties 
among nodes.  
The other approach of high-level abstraction is network level 
abstraction or “macroprogramming abstractions” where the 
whole network is treated as a single entity. It is an application 
centric-view, thus, it helps the programmer to focus on the 
programming logics rather than programming the platforms. 
Macroprogramming approach is divided into two subcatego-

ries; node-dependent and node-independent and we will cov-
er each of them in the next sections.  

3.1 Node-Level Abstraction 
Node-level programming approach focuses on the use of an 
existing programming language and abstracting hardware to 
provide a flexible control over the node.  

3.1.1 Programming Languages 

Application development at the node level is basically relying 
on the use of an existing programming language. NesC and C 
are the most well-known programming languages that are 
used for tiny embedded systems [18]. 
 
NesC 
NesC is a C based attached with a programming model that 
adds some features such as a flexible concurrency and orient-
ed application design. NesC programming language uses a 
static memory allocation (variables are allocated at the com-
pile time) to simplify the code and obtain an accurate result 
[34]. 

 
TinyOS 
TinyOS as in [35], is a simple application specific operating 
system used in embedded WSNs. TinyOS applications is 
written in NesC programming language to limit the hardware 
resources and support operations structures needed by 
sensors [36]. It is one of the most popular operating systems 
that support several frameworks applications based on a tiny 
node connected with the microcontroller and sensors [33]. 
TinyOS is a graph of the following independent components: 
 

• Module which provides interfaces for configuration, 
•  Configuration which is used to connect all 

component together 
 

Each of which has three concepts: 
• Commands are basically asking a component to 

perform some tasks. 
• Tasks are performed internally at the component such 

as initiating a connection or reading data. 
• Events are referring to the completion of that task.  
•  

One example of commands and events when initiating a 
sensor reading as in getData(). This command will cause a 
later signal dataReady() when data is obtained.  These two 
concepts – command and event - are used between 
components, however; the tasks are performed internally at 
the component [37].    

3.1.2 Middleware 

The key concept behind using middleware is to support the 
overall performance of applications and to connect the 
application layer with hardware and operating systems as 
shown in figure 2 below. Middleware in WSN supports 
“reprogrammability” which is the ability to break tasks and 
distribute these tasks to each node dynamically [38]. 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   1209 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

 Application Layer 

 

Transport Layer: Operating 
System  

Physical Layer: Network 
Hardware 

Middleware for WSN 

Security services Domain Services Integration services 

Resource Management Data Management Code Management 

Communication Support Processing Support 

Middleware helps applications programmer to focus on the 
programming logic without caring too much about the 
implementation details at the lower level. Moreover, 
middleware provides a reusable code, thus, the programmer 
can execute a new application without using complex and 
inefficient methods. Furthermore, it supports system 
monitoring and integration [39].    
 

 

 

 

 

 

 

 
Fig. 2. Reference of wireless sensor networks middleware [38] 

 

Virtual Machine 

 Virtual machine is one type of middleware where the applica-
tion is written in small segments and then distributes these 
segments through the network using tailored algorithms. 
Therefore, the size of the code transmitted to each node is re-
duced and the communication amount between the server and 
each node is minimized as well. [40]. 
 Mate [41], and ASVM [42] are stack oriented virtual machines 
that run on TinyOS.  These interpreter-based virtual machines 
provide an application specific virtual machine which is em-
ployed to enhance the flexibility and offer efficient program-
ming environments [18].  

Mate 
 In Mate, the codes are broken into small fragments that are 
injected later into the network to build the total program.  It 
has a scheduler to adopt a FIFO based queue of contexts and 
encloses them with their executions. It performs the execution 
by fetching the next byte code at the fragments store and at-
taches it to its corresponding operation.  Mate uses a Trickle 
algorithm to improve the broadcasting speed and to reduce 
the cost when nodes propagate new data. [41] 

Impala 

 Another example of middleware is Impala [43] which sup-
ports modularity, adaptability to rapidly change environments 
as well as the reprogrammability. This virtual machine is de-
ployed to provide independent execution platforms where the 

programmers can use them to write their codes [43]. 

The system architecture of Impala is illustrated in Figure 3, 
where the lower layer holds ZebraNet application protocols 
and programs. These application protocols employ different 
techniques to gather environment information and send it to 
the base station in peer to peer transmission. The upper layer 
holds three middleware agents:  

• Application Adapter where the application is adjusted 
for various conditions in order to enhance the overall 
performance, and energy efficiency.   

• Application Updater is used to install the software up-
dates on each node. 

•  Event Filtering captures events to initiate a sequence of 
operations. 
 

In Impala there are five different types of events; Timer Event, 
Packet Event, Send Done Event, Data Event, and Device 
Event. To eliminate the programming complexity of synchro-
nizing two different handlers, the system will handle them 
sequentially in case they arrived at the same time. [43]. 
 
 

 
 
 
 

Fig. 3. system architecture of Impala 
 
3.2 Group-Level Abstraction 
The main concept behind a group-level abstraction in WSNs is 
to divide the whole network into small groups and perform 
computations on those groups instead of dealing with each 
single node.   In a group- level abstraction, the network can be 
grouped based on the physical locations of the nodes (Neigh-
borhood Based) or it can be grouped logically [44]. 

3.2.1 Physical Group 

  The notion of physical group or “ neighborhood based group 
“ is basically a node with its neighbor’s without paying any 
attention to the properties of these nodes [18]. This technique 
is used to hide the communication details between the nodes 
and it can be used in “localized algorithms” where the interac-
tion between participating nodes is limited to their neighbors 
as in [45]. 

Hood 
 Hood is one example of a neighborhood- based programming 
abstraction where a given node is limited to communicate and 
share data with neighboring nodes only. This physical close-
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ness is determined by the physical distance or the number of 
hops between sensor nodes [46].  
In Hood, all nodes in each group have to be in the same net-
work and if one node moves to another network then it is not 
a member of that group. Figure 4, describes how a node be-
comes a neighbor of other node. Node A, receive the data re-
ported by node B and C, while it reports its reading to node B. 
Also, B is a neighbor of D but D is not in B’s neighborhood. A 
node can receive data from its neighbors and its own data is 
send to its co-neighbor. One node can be assigned to read loca-
tion over one group, and read the temperature over other 
group.  To manage the complexity of these tasks, Hood pro-
vides an interface to read the shared values of each neighbor 
[47] 
 
 

 

 

Fig. 4. The Definition of Neighborhood in Hood  

Abstract Region 

Another example of a neighborhood-based group abstraction 
is Abstract Region which relies on the concept of grouping the 
nodes in mesh, spanning tree or could be based on the geo-
graphic locations of these nodes [48]. Abstract Regions as in 
Hood, cannot group nodes from different network. Moreover, 
this model can be adapted within different network conditions 
to attain different levels of energy and bandwidth usage as 
well as the accuracy level of shared operations. Also, each re-
gion is separated from other regions and requires a specific 
implementation. Abstract Regions can be implemented by 
following these phases:  

• Discovering Neighbors 
 In this phase, a node starts to discover its neighbors by either 
sending a broadcast message or gathering the location of each 
sensor node in the network. Since sensor nodes might move 
from one network to another, this phase is a continuous pro-
cess to update any change in one region. However, a node has 
the ability to deactivate this process at any given time to re-
duce the power consumption when sending discovery mes-
sages.  
 

• Enumeration 
This phase is used to address all nodes in one region and re-
turn the location of each of the nodes to help the participating 
nodes in one region to communicate directly.  

• Data sharing 

At this phase, all shared variable between nodes are repre-
sented as pair of key and value.  

• Reduction 
This phase is used to cut the shared variables across nodes in 
one region and it is hidden from programmers [48]. 

3.2.2 Logical group 

A logical group abstraction can be defined as a set of nodes 
that share the same properties in sensor networks such as 
node types, sensor inputs, or perform the same tasks [18].  
Unlike neighborhood based, the logical group is considered to 
be a dynamic group since it is based on the shared properties 
and not limited by the physical location of nodes [49]. 
 Logical group-based, cannot cross multiple networks at the 
same time which means we cannot reuse the existing sensors 
without reprogramming them [50]. 

EnviroTrack 

One example of Logical based group is EnviroTrack. It is an 
application used to track programs where a set of nodes that 
detect the same event are grouped together [51]. 

SPIDEY 

Another example of logical based group is a SPIDEY language 
where a set of nodes are grouped based on their shared 
properties [46]. In SPIDEY language, each node has both static 
and dynamic attributes which are used to determine the nodes 
logical neighbors as in [46]. SPIDEY delivers communication 
APIs, where a broadcasted message is sent to a logical 
neighborhood instead of nodes that fall in the same 
communication range. This technique helps programmers to 
clearly specify the communication range and which nodes to 
select as a neighbor.  All logical neighbors are considered to be 
one group with functionally related characteristics. 
Thus, a group-based abstraction makes programming sensor 
network model simpler since it performs in group level in-
stead of node level [44]. However, this approach is mainly 
designed for applications that operate in a single network 
since we cannot across multiple networks at the same times 
[50]. 

3.3 Network-Level Abstraction 
Several macro-programming abstractions have been 
introduced recently. Macro-programming systems or 
equivalently “networking abstractions” considered to be high-
level WSN programming model where the whole sensors 
network is treated as a single system [18]. 

This approach helps the programmers to emphasize on im-
proving the semantics of the program instead of studying the 
characteristics of the programming environments [18].  
There are two different major classes of network-level abstrac-
tions. One is a node-dependent abstraction which focuses on 
enabling the programmers to define the global behavior of the 
system as a collection of nodes that can be treated simultane-
ously in one program. In contrast, node-independent ap-
proach defines the system in independent way as single unit 
[5]  
 

Node Neighbors 

A C ,B 

B A,C 
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3.3.1 Node Dependent Approach 

Node-dependent approach is intended to deliver more flexi-
bility than node independent. This approach allows pro-
grammers to define the global behavior of the computation in 
terms of nodes and their states [53].   

Kairos 

 Kairos is a node-dependent abstraction where the neighbor-
ing nodes can be computed in parallel and communicate using 
common requests at specific nodes [52]. Kairos has a central-
ized programming environment which is translated later by 
the compiler to many executable effective nodal programs 
[52]. Kairos enhances the use of sensor programming lan-
guages by providing three simple mechanisms. First, node 
abstraction, where the programmer deploys network nodes 
explicitly and names each node with an integer identifier, yet 
these integer identifiers do not reflect the structure of the sen-
sor node. Hence, there is no need for the programmer to speci-
fy the network structure when using Kairos [52]. Second, is the 
identification of one-hop neighbors, where the programmers 
are able to use get neighbors function to support wireless 
communication between the nodes. When get function is 
called, a list of neighbors nodes are returned, so the calling 
node can select which node to communicate with. Third ab-
straction is accessing data on a remote node which implies the 
capacity to access variables from selected node since Kairos 
does not restrict any remote access to the variable nodes [53].  
 Kairos implements an eventual consistency method; by 
adopting this feature the program is able to deliver the most 
accurate result even if an internal node is not assured to be 
reliable. Thus, Kairos can be used with many well-known pro-
gramming languages such as python as in [52]. 

Regiment 

Another example of node-dependent abstraction is Regiment, 
a purely microprogramming functional language that allows 
the direct use of program state [3]. However, it uses what is 
called monads; described in more detail elsewhere in [54]. In 
Regiment, programmers deploy groups of data stream or what 
is called signals. These signals used to represent the finding of 
each individual node. Regiment also provides the concept of 
region as in Abstract Regions [55], which can be used to en-
hance the logical relationship between the nodes and data 
sharing between sensor nodes. The compiler at Regiment con-
verts the whole program into a form of simple readily pro-
gram using token machine technique which is a very simple 
model to achieve internal sensing and able to receive signals 
from neighbor nodes [3].  
     Moreover, Regiment applies a multi-stage programming 
mechanism to support the use of different programming lan-
guages that are not maintained by the given program [55]. 
Also, Regiment enables the use of generics that qualify the 
program to pass any data types as in C++.  It supports three 
polymorphic data types: 

• Stream which represents the rapid changes in the 
nodes’ states. 

• Space which represents the real space with a given 
value of specific type. 

• Event which represents the events that have values 
and happen at a specific time.  

 The concept behind streams and event is founded in Func-
tional Reactive Programming (FRP); see [56] for more details. 
Since Regiment is completely functional language, the values 
of stream, event and space are treated as formal parameters 
where they can be returned from function and passed as ar-
guments [3].  

 
3.3.2 Node-Independent Approach 

 Node-independent approach or equivalently “Database ap-
proach” is one type of high-level abstractions for sensor net-
work programming. This approach distributes the nodes in a 
network using independent way and does not have any obvi-
ous abstraction for nodes [53]. 

TinyDB 

 TinyDB as in [56], is a query processing system that mainly 
focuses on improving the energy consumption by controlling 
the tested data. The network is treated as one database system 
where users are able to retrieve information by using SQL-
Like queries.  This approach should adhere to what is called 
homogeneous network where all nodes must have same capa-
bilities before testing to achieve the desire result. In TinyDB 
system, the sensed data are actually used as an input of sensor 
table and system user can access these entries by using SQL-
like queries [52].  

Cougar 

 Cougar is another example of node-independent abstractions 
that has been proposed early at Cornell University[57]. Cougar 
system is used to test for query processing in sensor networks 
[58]. Each Cougar system consists of three levels: 

• Queryproxy, a tiny database element that runs in sen-
sor nodes to track and perform system queries. 

•  Frontend element which is used to setup connections 
between sensor nodes in one network and other 
nodes in different networks.  

• Graphical user interface (GUI) which is used to enable 
users to perform queries [58].  

Cougar drives query to the end nodes and all the computa-
tions are achieved at the edge level to reduce the amount of 
transmitted data. It also helps the system users to retrieve the 
data and system behavior.  However, it is too difficult to deal 
with complex applications like tracking system using this 
technique [59].  
 Although Node-independent abstraction delivers very simple 
user interface, it is still not suitable for applications that re-
quire a lot of control flow.  

4 ANALYSIS AND EVALUATION  
     In this section, we focus on the most important strategies 
that are used in each programming model to fulfil the pro-
gramming requirements discussed earlier. A summary of how 
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each level of the programming approaches addresses these 
requirements is shown in the next three tables below. Table 1 
below summarizes how a node-level abstraction addresses the 
programming requirements discussed in section 2. Program-
mers at this level are able to deploy some features to enhance 
the scalability of the program by using low-level interfaces. 
Even though, these interfaces are flexible, they tend to be 
complex in execution operations [51].  
 
 
 
 
 

 
To maintain collaboration and synchronization in TinyOS, two 
components are used: configuration to connect all components 
together and module to perform the synchronous method as a 
FIFO queue. Impala uses timer event signals to manage the 
collaboration and synchronization between sensing nodes, 
whereas Mate installs concurrency manager and scheduler to 
maintain these requirements. Middleware examples listed 
above, deliver efficient mechanisms for system updates to 
support dynamic applications and offer a great energy saving 
[60]. 
 
 

TABLE 1 
EVALUATION OF NODE-LEVEL MODEL FOR SENSOR NETWORKS

 
 
 

 
 

 
Table 2. shows how the programming requirements are im- plemented in each programming model at the group level ab-

Evaluation Factor 
Node-Level 

Programming Language Middleware 

TinyOS/NesC Mate Impala 

Scalability 
Programmers implement each 
feature by using low-level inter-
faces.  
 
Flexible but tend to be complex. 
 

Can express a wide range 
of applications  

Can express a wide 
range of applications 

Localization 
Variable locations can be statically 
compiled into the program 

Can be extended to per-
form a localization service.  

Static location of 
communicating 
nodes 

Failure-Resilience 
Restrictions allow the nesC com-
piler to perform whole-program 
analyses such as data-race detec-
tion to  improves reliability  

Mate is concise programs 
that are resilient to failure.   
 
Ensures the resilient to 
buggy or malicious cap-
sules. 

Adaptation to device 
failures.  
 
Autonomic behavior 
which increases its 
fault tolerance  

Energy-Efficiency 
Restrictions allow the nesC com-
piler to perform whole-program 
analyses such as using aggressive 
function in lining to reduce re-
source consumption. 
 

Efficient dynamic code 
update :  Small interpreter 
code 

Efficient dynamic 
code update. 
 
 Eliminating dupli-
cate components to be 
transmitted over 
network. 

Collaboration 
Use configuration to wire inter-
faces from several modules to-
gether. 
 

Supported shared varia-
bles that managed by con-
currency manager 

 

Time Synchronization 
Use module, a part of the TinyOS 
for timer service.   

A scheduler component to 
adopts a FIFO based 
queue 

Timer Event signals 
attached. 
 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015                                                                                                   1213 
ISSN 2229-5518 

IJSER © 2015 
http://www.ijser.org  

straction. Since all the programming models listed on table II  
are group based abstractions, the scalability, collaboration and 
data aggregation are supported through data sharing. Caching 
technique is used in several programming models at this level 
to reduce the communications between sensing nodes and 
helps to save energy [48, 47, 51]. 
Caching and abstract region are employed in Hood to improve 
the communication failures by replacing the failed data with 
the old cached one. 
 
However, SPIDEY utilizes redundancy mechanism to avoid 

flooding the whole program and to limit the propagating of 
information [52]. There are some components or functions 
attached to each programming model to improve localization:  
Hood uses mirror to reflect node locations or time synchroni-
zation services [47]. In this case, abstract region starts with 
neighbor discovery where each node initiates the process of 
discovering the location of its neighbors [48].  As the tracked 
objects move in EnviroTrack, the location of participating 
nodes has to be known by using some functions like Location: 
avg (position) [51]. 

TABLE 2 
EVALUATION OF GROUP -LEVEL APBSTRACTIONS FOR SENSOR NETWORKS

 
 

 

 
Table 3. shows the evaluation of macroprogramming ap-
proach based on the programming requirements. The main 

approach to satisfy scalability is to reduce the communication 
between the sensor nodes. Cougar and TinyDB are the most 

Evaluation Factor 

Group-Level 
Physical Group Logical Group 
Hood Abstract Region EnviroTrack SPIDEY 

Scalability Supported 
through data shar-
ing. 
 

Supported 
through data shar-
ing  

Supported  through 
data sharing etc. 

Supported  through 
data sharing etc. 

Localization Use mirrors to 
reflect location. 
 

At Neighbor discov-
ery stage  discover-
ing the location 
neighboring nodes   

For tracking objects.   
 
As the tracked ob-
jects move, the loca-
tion of have to be 
known.   
 

Static physical loca-
tion of each node 
should be identified 
when creating node.   

Failure-Resilience Caching : im-
proves  communi-
cation failures by 
substituting the 
data with old 
cached data 
 

Caching: 
improve   communi-
cation failures by 
substituting the data 
with old cached data 

Dynamic group 
management and 
leader election 

Utilize  redundancy 
mechanism  

Energy-Efficiency Power consump-
tion supported 
through data shar-
ing. 

Supported through 
data sharing 
 
Caching low-level 
control knobs. 
 

through data shar-
ing Caching 
("freshness thresh-
old") 

Supports aggrega-
tion at group level 
through data shar-
ing etc.    

Collaboration Asymmetric 
Group 
definition and 
operations on 
group neighbor 
 

Group 
definition and 
operations on 
group   

Group definition 
and operations on 
group  Context la-
bel, dynamic group 

Group 
definition and 
operations on 
group 

Time Synchronization Use mirror to cre-
ate some services 
as  time synchro-
nization  
 

Use timeout mecha-
nism, and will fail if 
not completed with-
in a given time. 

Timer handler as an 
input to executes 
one iteration per 
invocation. 

 Contains a time-
period attribute 
when creating each 
node.  
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well-known examples of node-independent approach. They 
push the query selection at the edge (nodes) so the transmis-
sion data is reduced.   Moreover, Cougar and TinyDB extend 
their SQL so that users can express continuous sensing tasks. 
Regarding to localization, Regiment provides the ability to 

divide the tested area to spatial regions to facilitate the locali-
zation and communication processes. Also, Regiment is resili-
ent to failure where the master node or (Anchor) in each re-
gion is responsible to cover if a node fails or loses connectivity 
to others [3]. 

 
 
 

TABLE 3 
EVALUATION OF NETWORK-LEVEL MODELS FOR SENSOR NETWORK 

 
 
 

 
  

Evaluation Factor 

Network-Level 
Node-Dependent Node-Independent 
Kairos 
 

Regiment 
 

TinyDB 
 

Cougar 
 

Scalability No evidence for sup-
port 

Purely functional 
language. Permit the 
use of fold, map func-
tions. 

 Network query 
processing. 
Queries selection at  
(nodes) to Reduce 
transmission data  

Network query pro-
cessing. 
Queries selection at 
(nodes).  
Reduce transmission 
data 
  

Localization Each node is only 
responsible for local-
izing itself 

Use  Region  for the 
purpose of localizing 
sensing 

Each node is only 
responsible for lo-
calizing itself  
 

No evidence for 
support 

Failure-Resilience Eventual consistency  Anchor “ leader” is 
an  object persists 
across node failures 
 

No evidence for 
support 

No evidence for 
support 

Energy-Efficiency Caching Purely functional 
language.  
Permit the use of 
fold, map functions 

Acquisitional query 
processor changes 
sampling rate bat-
tery lasts for life-
time. 
 

In network query 
processing. 
 

Collaboration Describe a resource 
access as a variable 
access.  
 Implicitly express 
both distributed data 
flow and control 
flow. 
 

Region streams 
Capable of express-
ing groups of nodes 
with geographical, 
and logical relation-
ships 

Collaboration can 
be defined through 
a query. 

Collaboration can be 
defined through a 
query. 

Time Synchronization Automatically syn-
chronizes nodes 
when a checkpoint is 
taken or restored.   

Use signals to repre-
sent the finding of 
each individual node.  

Nodes run a simple 
time synchroniza-
tion protocol to 
agree on a global 
time base .  
 

The data is append-
ed at time intervals 
specified in the que-
ry termed as epochs. 
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5 FUTURE RESEARCH DIRECTIONS AND PROGRAMMING 

CHALLENGES FOR WIRELESS SENSOR NETWORKS 
 

Several programming approaches have been introduced and 
discussed in the past decades.  However, there are many pro-
gramming challenges still unresolved and need further study 
to make the WSNs programming valuable and effective  ; thus, 
in this section we list some of them and discus the future di-
rection of  programming WSNs. 
 

5.1  Reprogramming 

The network programming requirements might change over 
time, and this change could be parameter changes or repro-
gram the entire system. Also, wireless sensors might move 
from one network to another, but the limited resources of 
these sensors may result in short-lived systems. Thus, sensing 
nodes should have a dynamic reconfiguration services to keep 
these sensors functional for a long time [61]. 
  In order to create a useful and effective reprogramming sys-
tem, some requirements need to be addressed. First, time and 
space complexity of reprogramming algorithm should corre-
spond to the capacity of sensor node. Second, since the sensing 
nodes have limited energy resources, the reprogramming sys-
tem should be energy-efficient. Third, reprograming requires 
delivering the code entirely even though communications over 
wireless network are unreliable [62].   
 

5.2 Heterogeneity 

In WSNs, the basic form of heterogeneity is deploying multi-
ple different types of sensors in one application, each of which 
performs different task and has different energy and re-
sources. Heterogeneity in a WSN is used to improve the over-
all reliability and lifetime of the network [40].  Heterogeneity 
in WSNs has two forms: physical heterogeneity and logical 
heterogeneity. 
One example of physical heterogeneity is hierarchical architec-
ture, where the upper level sensors are more powerful and 
have more energy and network resources than the lower ones. 
Physical heterogeneity in WSNs has three types [62]: 

• Computational Heterogeneity: where some nodes have 
more computational power than others. 

• Link Heterogeneity: where some sensors have long dis-
tance than others. 

• Energy Heterogeneity: where some nodes have more en-
ergy resources than other nodes. 

In contrast, logical heterogeneity is the case where each sensor 
has to behave in different way to perform a specific task as-
signed by the application [18].  One example of the logical het-
erogeneity is the usage of generic role scheme to assign one 
task for each sensor node. These roles are stated by a declara-
tive configuration language; described in more details else-
where in [64].  
From programming point view, how to deploy heterogeneous 

sensors efficiently and how to program the entire system with 
these sensors are the main concerns in developing WSNs ap-
plications.  

 
 5.3 Quality of Service 

Quality of service is one of the important challenges in design-
ing wireless sensors applications. As stated earlier, wireless 
sensors are equipped with limited energy resources. Accord-
ingly, system designers need to balance between energy con-
sumed and some quality services such as accuracy and error 
rates to get efficient results with a satisfying quality. Quality is 
a very crucial element in designing sensor network application 
since there are certain actions will be taken according to the 
sensed result. For example, when detecting vulcanic eruptions 
or sensing earthquakes before they hit, to change the behavior 
accordingly or issue an emergency alert, lack of accuracy and 
large latency would make the application useless. If the infor-
mation gained from the sensor network is inaccurate, it may 
ruin the entire application. Thus, the system designers should 
be able to maintain the overall efficiency level as well as the 
quality of collected data [18]. 

The above requirements and the demanding deployment en-
vironment of wireless sensors make sensor programming the 
most challenging task in developing wireless sensors applica-
tions. In spite of the considerable effort carried out to let WSN 
programming model reach its best level of performance, still 
there are several open problems that need further investiga-
tion to make wireless sensor programming highly usable and 
efficient. 

6. CONCLUSION  
In this paper, we have provided taxonomy of different pro-
gramming levels in wireless sensor networks. Three different 
levels of programming approaches have been discussed: node 
level, group level and network level. Several examples have 
been covered and evaluated based on some programming re-
quirements for each level. Designing efficient programming 
models for WSNs has many challenges to overcome such as 
reprogramming, heterogeneity, and quality of service. Still 
there are missing some qualities and features to let WSNs pro-
gramming model reach its best level of performance.  
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