
International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1206
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Programming Models for Wireless Sensor
Networks: Status, Taxonomy, Challenges, and

Future Directions
Abrar Alajlan and Khaled Elleithy

Abstract— Wireless sensor networks (WSNs) play an important role in different application areas and have been successfully deployed in different
computing environments. However, programming sensor network applications is extremely challenging as the applications becoming more complex.
Some of these challenges are due to the sensors’ characteristics and others are due to the operating conditions of these sensors. Recently, researchers
have proposed diverse programming approaches to mitigate these challenges and make WSN programming more flexible and much easier.
This paper provides an extensive survey of the state-of-art in wireless sensor network programming models, focuses on a classification of programming
levels in wireless sensor networks and capturing some likely programming challenges and research future directions.

Index Terms— Sensor network,Wireless sensor network (WSN), Programming approaches, Macroprogramming, Wireless sensor networks taxonomy,
Evaluation,Programming challenges.

—————————— ——————————

1 INTRODUCTION
ypically, wireless sensor networks are composed of tiny

embedded devices, each of which has radio transceiver to
send or receive packets, processor to schedule and per-

form tasks, and power source to provide energy for the sensor
[1]. Wireless sensor networks applications contain a large
number of sensor nodes used to transmit and forward data
between sensing nodes and the sink or base station [2]. Most
often, WSN is utilized for the ease of deployment and en-
hanced flexibility of the network. Furthermore, it supports low
cost dense monitoring of hostile environments as well as dis-
aster relief, medical care and military surveillance [3].

 The advantage of being able to place remote sensing
nodes without having to run wires and the cost related to it is
a huge gain. As the size of the circuitry of WSNs is becoming
smaller along with the lower cost, the chances of their field of
applications are significantly growing [4]. Most sensors, de-
pending on the requirements, are battery powered and hence
conserving the energy of these sensors is very crucial. Several
programming approaches have been proposed to assist WSNs
programming. Two broad classes of WSNs programming
models have been explored lately; local behavior and global
behavior abstraction [5]. In local behavior abstractions, the
application has to be programmed in details at the node-level
and the programmers need to synchronize the program flow
between the sensing nodes and maintain the routing code
manually. In contrast, global behavior abstractions or equiva-
lently “High-level abstraction” has emerged as one of the most
important aspects in sensor networks where it is applied to
hide the internal operations from system programmers. The
main objective behind high-level approach is the ability to
treat a group of sensors or the entire network as one single
unit rather than programming each node individually [6].
 The main contribution of this work is to provide an
extensive survey on taxonomy of programming approaches
for wireless sensor networks. Our work also captures the pro-

gramming requirements and uses them to evaluate each of the
programming models. This paper also covers some open prob-
lems and challenges that need further investigation to make
wireless sensor programming reaches its best level of perfor-
mance and makes it highly usable and efficient.

Section II, identifies the requirements for sensor network
programming. Section III, provides a taxonomy on program-
ming approaches for WSNs. An in-depth look on each level of
the programming approaches is presented in Section IV, V and
VI. Analysis and evaluation of each model is discussed in Sec-
tion VII. Section VII investigates research challenges and fu-
ture direction of programming WSNs. Conclusion in provided
in Section IX.

2 REQUIREMENTS FOR SENSOR NETWORK
PROGRAMMING

It is obvious that sensor networks can be used in multiple
applications that can be deployed in diverse environments.
Moreover, it is very easy to modify the internal functionality
of sensor networks to perform different tasks to support many
sensor network applications. In this section we discuss im-
portant requirements for sensor network programming.

2.1 Scalability
Many sensor network applications deploy hundreds or even
thousands of nodes collaborating to achieve desired goal(s);
thus, scalability is one of the major designing attributes in sen-
sor networks applications [7]. A scalable sensor network is
representing the ability of the network to maintain its perfor-
mance even when the network size has changed [8]. In WSNs
scalability can be defined in two terms; size and geography.
Scalability with respect to size states that if the application
works properly with a few nodes, it can perform well with
thousands of nodes. On the other hand, the scalability with

T

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1207
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

respect to geography is defined as the ability to perform cor-
rectly in different geographical areas under different envi-
ronmental conditions [9]. Since we cannot predetermine the
location of sensor nodes and we cannot assure the lifetime of
sensor nodes, the programming model should help program-
mers in such a way to design scalable applications that are
able to deliver accurate results [8]. The location information of
distributed nodes needs to be known so as to exchange the
sensed data between sensor nodes [10].

2.2 Localization

In wireless sensor network applications there are hundreds of
nodes deployed in some areas such as underwater, in the
middle of desert, or in inaccessible terrains, so their locations
are random and unknown [11] , [12]. Thus, localization in sen-
sor network, the determination of the geographical locations
of sensors, is one of the important aspects for sensor network
programming [13]. Many localization techniques have been
proposed recently, either by deploying self-localized tech-
nique or by installing a Global Positioning System (GPS) de-
vice in each node to determine the exact location of the sensor
node. Moreover, localizing algorithms can be classified into
two groups:

• Range-based algorithms: where each node is equipped
with hardware measurements, so the location of each
sensor node can be determined by calculating the
distance of the selected sensor node with its
neighboring nodes [14].

• Range-free algorithms: where each node should
determine its estimated location, and the ideal radio
range of sensors.

Consequently, range-based algorithms provide more infor-
mation compared to range-free algorithms; however, it is
more expensive since there is some hardware measuring units
attached to each sensor [15].

2.3 Failure-Resilience
Failure –resilience or (Fault-tolerance) is one of the most chal-
lenging requirements in programming wireless sensor net-
works [16]. Sensors are usually deployed in inaccessible ter-
rains where people cannot reach the sensor nodes at that
place. Some nodes might fail due to the resources limitation,
hardware fault or it could be an intrusion from attackers. The
failed sensors may lead to inefficient functioning of the net-
work [17].
Thus, the system should keep performing properly even after
unreliable communication, node failures, link failures, or una-
vailability of the network due to misbehaving nodes [18, 19].
Some techniques should be adapted to indicate that the node
is not working in a proper way [20]. It could be done by moni-
toring the status of each node or using the power control tech-
nique [17, 19].
It is a very challenging requirement for the programmers to
develop a sensor application that is resilient to failures and
adaptive to the unexpected environmental changes which is

too hard to provide error handling for every failure [18].

2.4 Energy-Efficiency
Energy efficiency is one of the most important issues in de-
signing sensor networks. The overall design of sensor net-
works should mainly emphasize on enhancing the perfor-
mance in terms of reduced power consumption. The total life-
time of a battery-powered sensor networks is limited by the
non-rechargeable battery's capacity and each sensor node is
equipped with a limited computation processor to perform its
task [21]. Energy efficiency is very important factor in devel-
oping WSNs applications especially for continuous monitor-
ing applications such as disaster monitoring, military surveil-
lance and remote patient monitoring, etc. [22],[23].

2.5 Collaboration

Collaboration is another important characteristic of wireless
sensor applications. WSNs applications have been growing
recently. These applications vary in size and the number of
nodes, from large scale networks to the small ones. All nodes
in one application need to communicate in such a way so that
the data from these sensors are gathered and analyzed. Thus,
collaboration between sensor nodes is essential for these sen-
sors to cooperatively and effectively work together to com-
plete the desired tasks [24] [25].

Most of wireless sensor applications can be classified into
two types:

• Data collection type: where all data is collected and sent
to the main server such as habitat and environmental
monitoring applications.

• Collaborative information processing: where the main
task is to convert the data gained from multiple sensor
nodes to higher-level information such as a tracking
system applications [26].

Collaboration is not an independent requirement, it can sup-
port other requirements. For instance, collaboration between
sensor nodes may reduce the failure-resilience where the sens-
ing process remains functional even after one node failed.
Moreover, collaboration inside each sensor group may reduce
data transmission which is in turn will reduce the consumed
power [18].

2.6 Time Synchronization
Time-synchronization between nodes is another essential re-
quirement for sensor programming execution. Many WSNs
applications such as tracking application and implementation
of TDM requires a timer synchronization that is maintained at
each sensor node [27].
Clock synchronization is a process used to ensure an accurate
scheduling between nodes with no collision [28]. Moreover,
WSNs have limited power as discussed earlier; therefore,
time- synchronization technique helps to reduce the power
consumption by passing some nodes off from time to time
[29]. Clock synchronization in sensor nodes is generally re-
quired for many reasons such as:

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1208
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

• To support the coordination and collaboration between

sensor nodes,
• To manage the sleep and active state for each node [30],
• To avoid collisions between sensor nodes as used in

TDMA (Time division multiple access) [31], and
• To reduce the differences between the clocks that is

attached to each node at any time [32].

3 PROGRAMMING APPROACHES FOR WSNS: A
TAXONOMY

In this section we present a taxonomy of the programming
approaches for WSNs. Figure 1 depicts the entire taxonomy
that categorize the wireless sensor network programming ap-
proaches into low-level and high-level programming models.
Low-level approach mainly focuses on the use of an existing
programming language to provide flexible controls over
nodes. TinyOS with nesC as will discuss later, is one of the
well-known examples that falls into this subclass [33], [34].

Fig. 1. Taxonomy of programming approaches for WSNs .

 The virtual machine that runs on each node is one of the in-
teresting approaches in this subclass. It is responsible for
breaking tasks and dynamically distributing them to each
node.
High-level programming approach mainly focuses on simpli-
fying the collaboration between sensor nodes. One approach
is to divide the whole network into a set of groups and treat
each group as a single entity which is called “Group-level ab-
stractions”. It helps the programmer to describe collaborative
algorithms easily. This approach is further divided into physi-
cal groups and logical groups. In physical group, the network
can be grouped based on the physical location of the node,
whereas the logical group is based on the shared properties
among nodes.
The other approach of high-level abstraction is network level
abstraction or “macroprogramming abstractions” where the
whole network is treated as a single entity. It is an application
centric-view, thus, it helps the programmer to focus on the
programming logics rather than programming the platforms.
Macroprogramming approach is divided into two subcatego-

ries; node-dependent and node-independent and we will cov-
er each of them in the next sections.

3.1 Node-Level Abstraction
Node-level programming approach focuses on the use of an
existing programming language and abstracting hardware to
provide a flexible control over the node.

3.1.1 Programming Languages

Application development at the node level is basically relying
on the use of an existing programming language. NesC and C
are the most well-known programming languages that are
used for tiny embedded systems [18].

NesC
NesC is a C based attached with a programming model that
adds some features such as a flexible concurrency and orient-
ed application design. NesC programming language uses a
static memory allocation (variables are allocated at the com-
pile time) to simplify the code and obtain an accurate result
[34].

TinyOS
TinyOS as in [35], is a simple application specific operating
system used in embedded WSNs. TinyOS applications is
written in NesC programming language to limit the hardware
resources and support operations structures needed by
sensors [36]. It is one of the most popular operating systems
that support several frameworks applications based on a tiny
node connected with the microcontroller and sensors [33].
TinyOS is a graph of the following independent components:

• Module which provides interfaces for configuration,
• Configuration which is used to connect all

component together

Each of which has three concepts:
• Commands are basically asking a component to

perform some tasks.
• Tasks are performed internally at the component such

as initiating a connection or reading data.
• Events are referring to the completion of that task.
•

One example of commands and events when initiating a
sensor reading as in getData(). This command will cause a
later signal dataReady() when data is obtained. These two
concepts – command and event - are used between
components, however; the tasks are performed internally at
the component [37].

3.1.2 Middleware

The key concept behind using middleware is to support the
overall performance of applications and to connect the
application layer with hardware and operating systems as
shown in figure 2 below. Middleware in WSN supports
“reprogrammability” which is the ability to break tasks and
distribute these tasks to each node dynamically [38].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1209
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

 Application Layer

Transport Layer: Operating
System

Physical Layer: Network
Hardware

Middleware for WSN

Security services Domain Services Integration services

Resource Management Data Management Code Management

Communication Support Processing Support

Middleware helps applications programmer to focus on the
programming logic without caring too much about the
implementation details at the lower level. Moreover,
middleware provides a reusable code, thus, the programmer
can execute a new application without using complex and
inefficient methods. Furthermore, it supports system
monitoring and integration [39].

Fig. 2. Reference of wireless sensor networks middleware [38]

Virtual Machine

 Virtual machine is one type of middleware where the applica-
tion is written in small segments and then distributes these
segments through the network using tailored algorithms.
Therefore, the size of the code transmitted to each node is re-
duced and the communication amount between the server and
each node is minimized as well. [40].
 Mate [41], and ASVM [42] are stack oriented virtual machines
that run on TinyOS. These interpreter-based virtual machines
provide an application specific virtual machine which is em-
ployed to enhance the flexibility and offer efficient program-
ming environments [18].

Mate
 In Mate, the codes are broken into small fragments that are
injected later into the network to build the total program. It
has a scheduler to adopt a FIFO based queue of contexts and
encloses them with their executions. It performs the execution
by fetching the next byte code at the fragments store and at-
taches it to its corresponding operation. Mate uses a Trickle
algorithm to improve the broadcasting speed and to reduce
the cost when nodes propagate new data. [41]

Impala

 Another example of middleware is Impala [43] which sup-
ports modularity, adaptability to rapidly change environments
as well as the reprogrammability. This virtual machine is de-
ployed to provide independent execution platforms where the

programmers can use them to write their codes [43].

The system architecture of Impala is illustrated in Figure 3,
where the lower layer holds ZebraNet application protocols
and programs. These application protocols employ different
techniques to gather environment information and send it to
the base station in peer to peer transmission. The upper layer
holds three middleware agents:

• Application Adapter where the application is adjusted
for various conditions in order to enhance the overall
performance, and energy efficiency.

• Application Updater is used to install the software up-
dates on each node.

• Event Filtering captures events to initiate a sequence of
operations.

In Impala there are five different types of events; Timer Event,
Packet Event, Send Done Event, Data Event, and Device
Event. To eliminate the programming complexity of synchro-
nizing two different handlers, the system will handle them
sequentially in case they arrived at the same time. [43].

Fig. 3. system architecture of Impala

3.2 Group-Level Abstraction
The main concept behind a group-level abstraction in WSNs is
to divide the whole network into small groups and perform
computations on those groups instead of dealing with each
single node. In a group- level abstraction, the network can be
grouped based on the physical locations of the nodes (Neigh-
borhood Based) or it can be grouped logically [44].

3.2.1 Physical Group

 The notion of physical group or “ neighborhood based group
“ is basically a node with its neighbor’s without paying any
attention to the properties of these nodes [18]. This technique
is used to hide the communication details between the nodes
and it can be used in “localized algorithms” where the interac-
tion between participating nodes is limited to their neighbors
as in [45].

Hood
 Hood is one example of a neighborhood- based programming
abstraction where a given node is limited to communicate and
share data with neighboring nodes only. This physical close-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1210
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

ness is determined by the physical distance or the number of
hops between sensor nodes [46].
In Hood, all nodes in each group have to be in the same net-
work and if one node moves to another network then it is not
a member of that group. Figure 4, describes how a node be-
comes a neighbor of other node. Node A, receive the data re-
ported by node B and C, while it reports its reading to node B.
Also, B is a neighbor of D but D is not in B’s neighborhood. A
node can receive data from its neighbors and its own data is
send to its co-neighbor. One node can be assigned to read loca-
tion over one group, and read the temperature over other
group. To manage the complexity of these tasks, Hood pro-
vides an interface to read the shared values of each neighbor
[47]

Fig. 4. The Definition of Neighborhood in Hood

Abstract Region

Another example of a neighborhood-based group abstraction
is Abstract Region which relies on the concept of grouping the
nodes in mesh, spanning tree or could be based on the geo-
graphic locations of these nodes [48]. Abstract Regions as in
Hood, cannot group nodes from different network. Moreover,
this model can be adapted within different network conditions
to attain different levels of energy and bandwidth usage as
well as the accuracy level of shared operations. Also, each re-
gion is separated from other regions and requires a specific
implementation. Abstract Regions can be implemented by
following these phases:

• Discovering Neighbors
 In this phase, a node starts to discover its neighbors by either
sending a broadcast message or gathering the location of each
sensor node in the network. Since sensor nodes might move
from one network to another, this phase is a continuous pro-
cess to update any change in one region. However, a node has
the ability to deactivate this process at any given time to re-
duce the power consumption when sending discovery mes-
sages.

• Enumeration
This phase is used to address all nodes in one region and re-
turn the location of each of the nodes to help the participating
nodes in one region to communicate directly.

• Data sharing

At this phase, all shared variable between nodes are repre-
sented as pair of key and value.

• Reduction
This phase is used to cut the shared variables across nodes in
one region and it is hidden from programmers [48].

3.2.2 Logical group

A logical group abstraction can be defined as a set of nodes
that share the same properties in sensor networks such as
node types, sensor inputs, or perform the same tasks [18].
Unlike neighborhood based, the logical group is considered to
be a dynamic group since it is based on the shared properties
and not limited by the physical location of nodes [49].
 Logical group-based, cannot cross multiple networks at the
same time which means we cannot reuse the existing sensors
without reprogramming them [50].

EnviroTrack

One example of Logical based group is EnviroTrack. It is an
application used to track programs where a set of nodes that
detect the same event are grouped together [51].

SPIDEY

Another example of logical based group is a SPIDEY language
where a set of nodes are grouped based on their shared
properties [46]. In SPIDEY language, each node has both static
and dynamic attributes which are used to determine the nodes
logical neighbors as in [46]. SPIDEY delivers communication
APIs, where a broadcasted message is sent to a logical
neighborhood instead of nodes that fall in the same
communication range. This technique helps programmers to
clearly specify the communication range and which nodes to
select as a neighbor. All logical neighbors are considered to be
one group with functionally related characteristics.
Thus, a group-based abstraction makes programming sensor
network model simpler since it performs in group level in-
stead of node level [44]. However, this approach is mainly
designed for applications that operate in a single network
since we cannot across multiple networks at the same times
[50].

3.3 Network-Level Abstraction
Several macro-programming abstractions have been
introduced recently. Macro-programming systems or
equivalently “networking abstractions” considered to be high-
level WSN programming model where the whole sensors
network is treated as a single system [18].

This approach helps the programmers to emphasize on im-
proving the semantics of the program instead of studying the
characteristics of the programming environments [18].
There are two different major classes of network-level abstrac-
tions. One is a node-dependent abstraction which focuses on
enabling the programmers to define the global behavior of the
system as a collection of nodes that can be treated simultane-
ously in one program. In contrast, node-independent ap-
proach defines the system in independent way as single unit
[5]

Node Neighbors

A C ,B

B A,C

C None

D B

A

B C

D

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1211
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

3.3.1 Node Dependent Approach

Node-dependent approach is intended to deliver more flexi-
bility than node independent. This approach allows pro-
grammers to define the global behavior of the computation in
terms of nodes and their states [53].

Kairos

 Kairos is a node-dependent abstraction where the neighbor-
ing nodes can be computed in parallel and communicate using
common requests at specific nodes [52]. Kairos has a central-
ized programming environment which is translated later by
the compiler to many executable effective nodal programs
[52]. Kairos enhances the use of sensor programming lan-
guages by providing three simple mechanisms. First, node
abstraction, where the programmer deploys network nodes
explicitly and names each node with an integer identifier, yet
these integer identifiers do not reflect the structure of the sen-
sor node. Hence, there is no need for the programmer to speci-
fy the network structure when using Kairos [52]. Second, is the
identification of one-hop neighbors, where the programmers
are able to use get neighbors function to support wireless
communication between the nodes. When get function is
called, a list of neighbors nodes are returned, so the calling
node can select which node to communicate with. Third ab-
straction is accessing data on a remote node which implies the
capacity to access variables from selected node since Kairos
does not restrict any remote access to the variable nodes [53].
 Kairos implements an eventual consistency method; by
adopting this feature the program is able to deliver the most
accurate result even if an internal node is not assured to be
reliable. Thus, Kairos can be used with many well-known pro-
gramming languages such as python as in [52].

Regiment

Another example of node-dependent abstraction is Regiment,
a purely microprogramming functional language that allows
the direct use of program state [3]. However, it uses what is
called monads; described in more detail elsewhere in [54]. In
Regiment, programmers deploy groups of data stream or what
is called signals. These signals used to represent the finding of
each individual node. Regiment also provides the concept of
region as in Abstract Regions [55], which can be used to en-
hance the logical relationship between the nodes and data
sharing between sensor nodes. The compiler at Regiment con-
verts the whole program into a form of simple readily pro-
gram using token machine technique which is a very simple
model to achieve internal sensing and able to receive signals
from neighbor nodes [3].
 Moreover, Regiment applies a multi-stage programming
mechanism to support the use of different programming lan-
guages that are not maintained by the given program [55].
Also, Regiment enables the use of generics that qualify the
program to pass any data types as in C++. It supports three
polymorphic data types:

• Stream which represents the rapid changes in the
nodes’ states.

• Space which represents the real space with a given
value of specific type.

• Event which represents the events that have values
and happen at a specific time.

 The concept behind streams and event is founded in Func-
tional Reactive Programming (FRP); see [56] for more details.
Since Regiment is completely functional language, the values
of stream, event and space are treated as formal parameters
where they can be returned from function and passed as ar-
guments [3].

3.3.2 Node-Independent Approach

 Node-independent approach or equivalently “Database ap-
proach” is one type of high-level abstractions for sensor net-
work programming. This approach distributes the nodes in a
network using independent way and does not have any obvi-
ous abstraction for nodes [53].

TinyDB

 TinyDB as in [56], is a query processing system that mainly
focuses on improving the energy consumption by controlling
the tested data. The network is treated as one database system
where users are able to retrieve information by using SQL-
Like queries. This approach should adhere to what is called
homogeneous network where all nodes must have same capa-
bilities before testing to achieve the desire result. In TinyDB
system, the sensed data are actually used as an input of sensor
table and system user can access these entries by using SQL-
like queries [52].

Cougar

 Cougar is another example of node-independent abstractions
that has been proposed early at Cornell University[57]. Cougar
system is used to test for query processing in sensor networks
[58]. Each Cougar system consists of three levels:

• Queryproxy, a tiny database element that runs in sen-
sor nodes to track and perform system queries.

• Frontend element which is used to setup connections
between sensor nodes in one network and other
nodes in different networks.

• Graphical user interface (GUI) which is used to enable
users to perform queries [58].

Cougar drives query to the end nodes and all the computa-
tions are achieved at the edge level to reduce the amount of
transmitted data. It also helps the system users to retrieve the
data and system behavior. However, it is too difficult to deal
with complex applications like tracking system using this
technique [59].
 Although Node-independent abstraction delivers very simple
user interface, it is still not suitable for applications that re-
quire a lot of control flow.

4 ANALYSIS AND EVALUATION
 In this section, we focus on the most important strategies
that are used in each programming model to fulfil the pro-
gramming requirements discussed earlier. A summary of how

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1212
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

each level of the programming approaches addresses these
requirements is shown in the next three tables below. Table 1
below summarizes how a node-level abstraction addresses the
programming requirements discussed in section 2. Program-
mers at this level are able to deploy some features to enhance
the scalability of the program by using low-level interfaces.
Even though, these interfaces are flexible, they tend to be
complex in execution operations [51].

To maintain collaboration and synchronization in TinyOS, two
components are used: configuration to connect all components
together and module to perform the synchronous method as a
FIFO queue. Impala uses timer event signals to manage the
collaboration and synchronization between sensing nodes,
whereas Mate installs concurrency manager and scheduler to
maintain these requirements. Middleware examples listed
above, deliver efficient mechanisms for system updates to
support dynamic applications and offer a great energy saving
[60].

TABLE 1
EVALUATION OF NODE-LEVEL MODEL FOR SENSOR NETWORKS

Table 2. shows how the programming requirements are im- plemented in each programming model at the group level ab-

Evaluation Factor
Node-Level

Programming Language Middleware

TinyOS/NesC Mate Impala

Scalability
Programmers implement each
feature by using low-level inter-
faces.

Flexible but tend to be complex.

Can express a wide range
of applications

Can express a wide
range of applications

Localization
Variable locations can be statically
compiled into the program

Can be extended to per-
form a localization service.

Static location of
communicating
nodes

Failure-Resilience
Restrictions allow the nesC com-
piler to perform whole-program
analyses such as data-race detec-
tion to improves reliability

Mate is concise programs
that are resilient to failure.

Ensures the resilient to
buggy or malicious cap-
sules.

Adaptation to device
failures.

Autonomic behavior
which increases its
fault tolerance

Energy-Efficiency
Restrictions allow the nesC com-
piler to perform whole-program
analyses such as using aggressive
function in lining to reduce re-
source consumption.

Efficient dynamic code
update : Small interpreter
code

Efficient dynamic
code update.

 Eliminating dupli-
cate components to be
transmitted over
network.

Collaboration
Use configuration to wire inter-
faces from several modules to-
gether.

Supported shared varia-
bles that managed by con-
currency manager

Time Synchronization
Use module, a part of the TinyOS
for timer service.

A scheduler component to
adopts a FIFO based
queue

Timer Event signals
attached.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1213
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

straction. Since all the programming models listed on table II
are group based abstractions, the scalability, collaboration and
data aggregation are supported through data sharing. Caching
technique is used in several programming models at this level
to reduce the communications between sensing nodes and
helps to save energy [48, 47, 51].
Caching and abstract region are employed in Hood to improve
the communication failures by replacing the failed data with
the old cached one.

However, SPIDEY utilizes redundancy mechanism to avoid

flooding the whole program and to limit the propagating of
information [52]. There are some components or functions
attached to each programming model to improve localization:
Hood uses mirror to reflect node locations or time synchroni-
zation services [47]. In this case, abstract region starts with
neighbor discovery where each node initiates the process of
discovering the location of its neighbors [48]. As the tracked
objects move in EnviroTrack, the location of participating
nodes has to be known by using some functions like Location:
avg (position) [51].

TABLE 2
EVALUATION OF GROUP -LEVEL APBSTRACTIONS FOR SENSOR NETWORKS

Table 3. shows the evaluation of macroprogramming ap-
proach based on the programming requirements. The main

approach to satisfy scalability is to reduce the communication
between the sensor nodes. Cougar and TinyDB are the most

Evaluation Factor

Group-Level
Physical Group Logical Group
Hood Abstract Region EnviroTrack SPIDEY

Scalability Supported
through data shar-
ing.

Supported
through data shar-
ing

Supported through
data sharing etc.

Supported through
data sharing etc.

Localization Use mirrors to
reflect location.

At Neighbor discov-
ery stage discover-
ing the location
neighboring nodes

For tracking objects.

As the tracked ob-
jects move, the loca-
tion of have to be
known.

Static physical loca-
tion of each node
should be identified
when creating node.

Failure-Resilience Caching : im-
proves communi-
cation failures by
substituting the
data with old
cached data

Caching:
improve communi-
cation failures by
substituting the data
with old cached data

Dynamic group
management and
leader election

Utilize redundancy
mechanism

Energy-Efficiency Power consump-
tion supported
through data shar-
ing.

Supported through
data sharing

Caching low-level
control knobs.

through data shar-
ing Caching
("freshness thresh-
old")

Supports aggrega-
tion at group level
through data shar-
ing etc.

Collaboration Asymmetric
Group
definition and
operations on
group neighbor

Group
definition and
operations on
group

Group definition
and operations on
group Context la-
bel, dynamic group

Group
definition and
operations on
group

Time Synchronization Use mirror to cre-
ate some services
as time synchro-
nization

Use timeout mecha-
nism, and will fail if
not completed with-
in a given time.

Timer handler as an
input to executes
one iteration per
invocation.

 Contains a time-
period attribute
when creating each
node.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1214
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

well-known examples of node-independent approach. They
push the query selection at the edge (nodes) so the transmis-
sion data is reduced. Moreover, Cougar and TinyDB extend
their SQL so that users can express continuous sensing tasks.
Regarding to localization, Regiment provides the ability to

divide the tested area to spatial regions to facilitate the locali-
zation and communication processes. Also, Regiment is resili-
ent to failure where the master node or (Anchor) in each re-
gion is responsible to cover if a node fails or loses connectivity
to others [3].

TABLE 3
EVALUATION OF NETWORK-LEVEL MODELS FOR SENSOR NETWORK

Evaluation Factor

Network-Level
Node-Dependent Node-Independent
Kairos

Regiment

TinyDB

Cougar

Scalability No evidence for sup-
port

Purely functional
language. Permit the
use of fold, map func-
tions.

 Network query
processing.
Queries selection at
(nodes) to Reduce
transmission data

Network query pro-
cessing.
Queries selection at
(nodes).
Reduce transmission
data

Localization Each node is only
responsible for local-
izing itself

Use Region for the
purpose of localizing
sensing

Each node is only
responsible for lo-
calizing itself

No evidence for
support

Failure-Resilience Eventual consistency Anchor “ leader” is
an object persists
across node failures

No evidence for
support

No evidence for
support

Energy-Efficiency Caching Purely functional
language.
Permit the use of
fold, map functions

Acquisitional query
processor changes
sampling rate bat-
tery lasts for life-
time.

In network query
processing.

Collaboration Describe a resource
access as a variable
access.
 Implicitly express
both distributed data
flow and control
flow.

Region streams
Capable of express-
ing groups of nodes
with geographical,
and logical relation-
ships

Collaboration can
be defined through
a query.

Collaboration can be
defined through a
query.

Time Synchronization Automatically syn-
chronizes nodes
when a checkpoint is
taken or restored.

Use signals to repre-
sent the finding of
each individual node.

Nodes run a simple
time synchroniza-
tion protocol to
agree on a global
time base .

The data is append-
ed at time intervals
specified in the que-
ry termed as epochs.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1215
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

5 FUTURE RESEARCH DIRECTIONS AND PROGRAMMING

CHALLENGES FOR WIRELESS SENSOR NETWORKS

Several programming approaches have been introduced and
discussed in the past decades. However, there are many pro-
gramming challenges still unresolved and need further study
to make the WSNs programming valuable and effective ; thus,
in this section we list some of them and discus the future di-
rection of programming WSNs.

5.1 Reprogramming

The network programming requirements might change over
time, and this change could be parameter changes or repro-
gram the entire system. Also, wireless sensors might move
from one network to another, but the limited resources of
these sensors may result in short-lived systems. Thus, sensing
nodes should have a dynamic reconfiguration services to keep
these sensors functional for a long time [61].
 In order to create a useful and effective reprogramming sys-
tem, some requirements need to be addressed. First, time and
space complexity of reprogramming algorithm should corre-
spond to the capacity of sensor node. Second, since the sensing
nodes have limited energy resources, the reprogramming sys-
tem should be energy-efficient. Third, reprograming requires
delivering the code entirely even though communications over
wireless network are unreliable [62].

5.2 Heterogeneity

In WSNs, the basic form of heterogeneity is deploying multi-
ple different types of sensors in one application, each of which
performs different task and has different energy and re-
sources. Heterogeneity in a WSN is used to improve the over-
all reliability and lifetime of the network [40]. Heterogeneity
in WSNs has two forms: physical heterogeneity and logical
heterogeneity.
One example of physical heterogeneity is hierarchical architec-
ture, where the upper level sensors are more powerful and
have more energy and network resources than the lower ones.
Physical heterogeneity in WSNs has three types [62]:

• Computational Heterogeneity: where some nodes have
more computational power than others.

• Link Heterogeneity: where some sensors have long dis-
tance than others.

• Energy Heterogeneity: where some nodes have more en-
ergy resources than other nodes.

In contrast, logical heterogeneity is the case where each sensor
has to behave in different way to perform a specific task as-
signed by the application [18]. One example of the logical het-
erogeneity is the usage of generic role scheme to assign one
task for each sensor node. These roles are stated by a declara-
tive configuration language; described in more details else-
where in [64].
From programming point view, how to deploy heterogeneous

sensors efficiently and how to program the entire system with
these sensors are the main concerns in developing WSNs ap-
plications.

 5.3 Quality of Service

Quality of service is one of the important challenges in design-
ing wireless sensors applications. As stated earlier, wireless
sensors are equipped with limited energy resources. Accord-
ingly, system designers need to balance between energy con-
sumed and some quality services such as accuracy and error
rates to get efficient results with a satisfying quality. Quality is
a very crucial element in designing sensor network application
since there are certain actions will be taken according to the
sensed result. For example, when detecting vulcanic eruptions
or sensing earthquakes before they hit, to change the behavior
accordingly or issue an emergency alert, lack of accuracy and
large latency would make the application useless. If the infor-
mation gained from the sensor network is inaccurate, it may
ruin the entire application. Thus, the system designers should
be able to maintain the overall efficiency level as well as the
quality of collected data [18].

The above requirements and the demanding deployment en-
vironment of wireless sensors make sensor programming the
most challenging task in developing wireless sensors applica-
tions. In spite of the considerable effort carried out to let WSN
programming model reach its best level of performance, still
there are several open problems that need further investiga-
tion to make wireless sensor programming highly usable and
efficient.

6. CONCLUSION
In this paper, we have provided taxonomy of different pro-
gramming levels in wireless sensor networks. Three different
levels of programming approaches have been discussed: node
level, group level and network level. Several examples have
been covered and evaluated based on some programming re-
quirements for each level. Designing efficient programming
models for WSNs has many challenges to overcome such as
reprogramming, heterogeneity, and quality of service. Still
there are missing some qualities and features to let WSNs pro-
gramming model reach its best level of performance.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1216
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

REFERENCES
[1] M. Tubaishat and S. Madria, “Sensor Networks: An Overview,”

IEEE Potentials, vol. 22, no. 2, pp. 20–23, April/May 2003.
[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,“A

Survey On Sensor Networks,” IEEE Communications Magazine,
vol. 40, no. 8, Aug 2002, pp. 102–114

[3] R. Newton and M.Welsh, “Region Streams: Functional
Macroprogramming for Sensor Networks,” Proceeedings of the 1st
international workshop on Data management for sensor networks:
in conjunction with VLDB, 2004, pp. 78-87

[4] N.Marriwala and P.Rathee, “An Approach To Increase The
Wireless Sensor Network Lifetime,” IEEE on Information and
Communication Technologies, Oct.2012, pp. 495-499

[5] S.Choochaisri, N. Pornprasitsakul, C.Intanagonwiwat, “Logic
Macroprogramming for Wireless Sensor Networks,” Interna-
tional Journal of Distributed Sensor Networks, 2012

[6] U.Bischoff and Kortuem, G., “A State-based Programming
Model and System for Wireless Sensor Networks”, IEEE In-
ternational Conference on Pervasive Computing and Communica-
tions, March, 2007, pp. 19-23

[7] K. Akkaya and M. Younis, “A Survey on Routing Protocols
for Wireless Sensor Networks,” Ad Hoc Networks, vol. 3,
no.3, May.2005, pp. 325–349

[8] M. Sousa, A. Kumar, M. Alencar , W. Lopes, “Scalability in
An Adaptive Cooperative System for Wireless Sensor Net-
works,” IEEE International Conference on Ultra-Modern Tele-
communications Workshops (ICUMT) , Oct. 2009

[9] R. Venkateswarlu and D. Janakiram, “A Simple Model for
Evaluating The Scalability in Wireless Sensor Networks,”
IEEE International Conference on Intelligent Sensors, Sensor
Networks and Information Processing Conference, Dec. 2005

[10] B.Warneke, et al., “Autonomous Sensing and Communica-
tion in A Cubic Millimeter “IEEE, vol.34, no.1 Jan 2001, pp.
44 – 51

[11] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Mo-
ses, and N. S. Correal, “Locating The Nodes: Cooperative
Localization in Wireless Sensor Network,” IEEE Signal Pro-
cessing Magazine, vol. 22, July. 2005, pp. 54–69

[12] Z. Chaczko, R. Klempous, J. Nikodem, M. Nikodem, J. Ro-
zenblit, An Improvement of Energy Aware Routing in Wire-
less Sensors Network, European Modeling and Simulation
Symposium, Barcelona, Oct. 2006

[13] T. Yasuhisa,“Node Localization for Sensor Networks using
Self-Organizing Maps”, IEEE Topical Conference on Wireless
Sensors and Sensor Networks (WiSNet), Jan 2011, pp. 61-64

[14] S. Pandey, P. Prasad, P. Sinha and P. Agrawal, “Localization
of Sensor Networks Considering Energy Accuracy Tradeoffs
“, IEEE International Conference on Collaborative Computing:
Networking, Applications and Work-sharing, 2005, pp. 1 – 10

[15] M.Rudafshani and S. Datta “Localization in Wireless Sensor
Networks,” IEEE International Symposium on Information
Processing in Sensor Networks, April. 2007, pp. 51-60

[16] M.Bellalouna A. Ghabri, “A Priori methods for Fault Toler-
ance in Wireless Sensor Networks,” IEEE World Congress on

 Computer and Information Technology (WCCIT), June. 2013
[17] L.M. Wang, J.F. Ma, C. Wang, and A.C. Kot, “Fault and In-

trusion Tolerance of Wireless Sensor Networks,” IEEE Inter-
national Parallel and Distributed Processing Symposium
(IPDPS), April. 2006

[18] R. Sugihara and R.Gupta, “Programming Models for Sensor
Networks: A Survey,” ACM Transactions on Sensor Networks,
vol. 4, no. 2, Article 8, March 2008

[19] D.Geetha, N. Nalini, R. Biradar, “Active Node based Fault
Tolerance in Wireless Sensor Network,” Annual IEEE India
Conference (INDICON), Dec. 2012, pp. 404 – 409

[20] V. Potdar, A. Sharif, E. Chang, “Wireless Sensor Networks: A
Survey”, IEEE International Conference on Advanced Infor-
mation Networking and Applications Workshops, AINA, 2009,
pp. 636- 641

[21] A. Alajlan, B. Dasari, Z. Nossire, K. Elleithy and V. Pande,
“Topology Management in Wireless Sensor Networks: Mul-
ti-State Algorithms,” International Journal of Wireless & Mobile
Networks (IJWMN), vol 4, no. 6, Dec 2012 pp. 17-26

[22] D.Chaudhary, and L. Waghmare, “Energy Efficiency and
Latency Improving Protocol for Wireless Sensor Networks,”
IEEE International Conference on Advances in Computing,
Communications and Informatics (ICACCI), Aug. 2013 pp. 1303
– 1308

[23] K. Vardhe ,C. Zhou, D. Reynolds, “Energy Efficiency Analy-
sis of Multistage Cooperation in Sensor Network,” IEEE
GLOBECOM, Dec. 2010, pp. 1 - 5

[24] M. Huang, and Y. Hen Hu "Collaborative Sampling in Wire-
less Sensor Networks."IEEE GLOBECOM Dec.2010, pp. 1-5

[25] W. Li, J. Bao, and W. Shen,” Collaborative Wireless Sensor
Networks: A Survey,” IEEE SMC Oct. 2011, pp. 2614 –2619

[26] F. Zhao, J. Shin, and J. Reich, "Information Driven Dynamic
Sensor Collaboration," IEEE Signal Processing Magazine, vol.
19, no. 2. Mar 2002, pp. 61-72

[27] S. Lee, U. Jang and J. Park, “Fast Fault-Tolerant Time Syn-
chronization for Wireless Sensor Networks,” IEEE ISORC
May.2008, pp. 178 – 185

[28] K. Yaguang, Z. Xifang, C. Huakui, “ Intelligent Time Syn-
chronization in Sensor Network”, IEEE International Confer-
ence on Wireless, Mobile and Multimedia Networks, Nov. 2006,
pp. 1 - 4

[29] S. Lasassmeh and J.Conrad, “Time Synchronization in Wire-
less Sensor Networks: A Survey,” IEEE SoutheastCon, Mar.
2010, pp. 242 – 245

[30] H.Liming, and G.Kuo, “A Novel Time Synchronization
Scheme in Wireless Sensor Networks,” IEEE Vehicular
Technology Conference, vol.2 May. 2006, pp. 568 – 572

[31] Q. Liu, J. Kuang, Z. Bi, H. Wang and N. Wu, “Time Synchro-
nization Performance Analysis and Simulation of a kind of
wireless TDMA Network,” IEEE International Frequency Con-
trol Symposium and Exposition, June.2006, pp. 299 – 303

[32] K.Yıldırım and A. Kantarci, “External Gradient Time Syn-
chronization In Wireless Sensor Networks, “IEEE Transac-
tions on Parallel and Distributed Systems, vol.PP, no.99, Mar

IJSER

http://www.ijser.org/
http://www.hindawi.com/63530420/
http://www.hindawi.com/64909384/
http://www.hindawi.com/40289198/
http://ieeexplore.ieee.org.libproxy.bridgeport.edu/xpl/articleDetails.jsp?tp=&arnumber=5195361&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DIntelligent+Time+Synchronization+in+Sensor+Network
http://ieeexplore.ieee.org.libproxy.bridgeport.edu/xpl/articleDetails.jsp?tp=&arnumber=5195361&contentType=Conference+Publications&searchField%3DSearch_All%26queryText%3DIntelligent+Time+Synchronization+in+Sensor+Network

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1217
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

2013, pp. 1-10
[33] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K.

Pister, “System architecture directions for networked sen-
sors,” SIGARCH Comput. Archit. News, vol. 28, no. 5, Nov.
2000. pp. 93-104

[34] D. Gay, P.Levis, R.Behren, M.Welsh, E.Brewer, and D.Culler,
“The NesC Language: A Holistic Approach to Networked
Embedded Systems,” ACM SIGPLAN Conference On Pro-
gramming Language Design And Implementation, 2003, pp.1-11

[35] TinyOS. http://www.tinyos.net/.
[36] J. Guevara, E. Vargas, F. Brunetti, F. Barrero, L. Aranda, “A

Framework for WSN using TinyOS and The IEEE1451
Standard,” IEEE Latin-American Conference on Communica-
tions (LATINCOM), Oct. 2011, pp. 1 – 5

[37] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accu-
rate and Scalable Simulation of Entire TinyOS Applica-
tions,” ACM Conference on Embedded Networked Sensor Sys-
tems, 2003, pp. 126 – 13

[38] K. Romer, O. Kastem, and F. Mattern. “Middleware Chal-
lenges for Wireless Sensor Networks,”. ACM SIGMOBILE
Mobile Computing and Communication Review (MC2R), 2002.
vol.2 , no.4 pp. 59–61

[39] M. Wang, J. Cao, J. Li and S.Das, “Middleware for Wireless
Sensor Networks: A Survey” Journal of Computer Science and
Technology, vol. 23 no. 3, May 2008 pp. 305-326

[40] B. Rubio, M. Diaz and J. Troya, “Programming Approaches
and Challenges for Wireless Sensor Networks,” IEEE Second
International Conference on Systems and Networks Communica-
tions (ICSNC), Aug. 2007

[41] P. Levis and D. Culler, “Mate: A Tiny Virtual Machine for
Sensor Networks,”. In Proceedings of the 10th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-X’02), San Jose, CA, USA,
Oct. 2002, pp.85-95

[42] P. Levis, D. Gay, and D. Culler, “Active Sensor Networks,”
In Proceedings of the 2nh International Symposium on Networked
Systems Design and Implementation (NSDI’05) San Francisco,
CA, USA, Mar. 2005 pp. 29–42

[43] T. Liu and M. Martonosi, “Impala: A Middleware System For
Managing Autonomic, Parallel Sensor Systems, “ Proceed-
ings of the ninth ACM SIGPLAN symposium on Principles and
practice of parallel programming, San Deigo, CA, USA. 2003
107–118.

[44] H.Paul and T. McGregor, “Wireless sensor networks: a dis-
tributed operating systems approach,” Proceedings of New
Zealand Computer Science Research Student Conference,
NZCSRSC, 2009

[45] D. Estrin, R.Govindan, J.Heidemann, “Next century chal-
lenges: scalable coordination in sensor networks,” Proceed-
ings of the 5th annual ACM/IEEE international conference on
Mobile computing and networking, 1999. pp. 263 270

[46] L. Mottola and G. P. Picco "Logical Neighborhoods: A Pro-
gramming Abstraction For Wireless Sensor Net-
works", Proc. 2nd International Conference on Distributed
Computing on Sensor Systems (DCOSS), 2006. pp.150 -168

[47] K.Whitehouse, C. Sharp, E. Brewer, D.Culler, “Hood: A
Neighborhood Abstraction For Sensor Networks,” Proceed-
ings of the 2nd international conference on Mobile systems, appli-
cations, and services, 2004, pp. 99-110

[48] M.Welsh and G.Mainland, “Programming Sensor Networks
Using Abstract Regions,” Proceedings of the 1st conference on
Symposium on Networked Systems Design and Implementation,
vol.1, 2004

[49] L.Mottola and G. P. Picco ," Programming Wireless Sensor
Networks with Logical Neighborhoods, “ In Proceedings of
the 1st ACM International Conference on Integrated Internet Ad-
hoc and Sensor Networks (INTERSENSE), May 2006.

[50] P.Vicaire, E.Hoque, Z.Xie,” Bundle: A Group-Based Pro-
gramming Abstraction for Cyber-Physical Systems,” IEEE
Transactions on Industrial Informatics, vol.8, no.2, May 2012,
pp. 379 – 392

[51] T. Abdelzaher. et. al. “EnviroTrack: towards an environmen-
tal computing paradigm for distributed sensor networks,”
Proceedings of the 24th International Conference on Distributed
Computing Systems. 2004, pp. 582–589.

[52] L. Mottola and G. P. Picco, “Programming Wireless Sensor
Networks: Fundamental Concepts and State Of The
Art,” ACM Computing Surveys, vol. 43, no. 3, 2011

[53] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-
programming Wireless Sensor Networks using Kairos,” Pro-
ceedings of the International Conference on Distributed Compu-
ting in Sensor Systems (DCOSS) June 2006

[54] E. Moggi,“Computational Lambda-Calculus And Monads,”
Proceedings. Fourth Annual Symposium on Logic in Computer
Science, June.1989, pp. 14 – 23

[55] R. Newton, G. Morrisett, M. Welsh, “The Regiment Macro-
programming System,” International Symposium on Infor-
mation Processing in Sensor Networks, April.2007, pp. 489 –
498

[56] S.Madden, M. Franklin, J.Hellerstein, W.Hong, “TinyDB: an
acquisitional query processing system for sensor networks,”
Journal ACM Transaction on Database System (TODS), vol.30
no.1, Mar. 2005, pp. 122-173

[57] Y. Yao and J.Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” ACM SIGMOD Rec-
ord, vol.31 no.3, Sep.2002, pp.9-18

[58] W.Fung, D Sun, J. Gehrke, “COUGAR: The Network is the
Database,” Proceedings of ACM SIGMOD International Confer-
ence on Management of Data, 2002, pp. 621-621

[59] J.Horey, E.Nelson, A.Maccabe, “Tables: A Spreadsheet-
Inspired Programming Model For Sensor Networks,” Pro-
ceedings of the 6th IEEE International Conference On Distributed
Computing In Sensor Systems, 2010, pp. 1-14

[60] J.Radhika and S.Malarvizhi, “Middleware Approaches for
Wireless Sensor Networks: An Overview,” IJCSI Internation-
al Journal of Computer Science Issues, vol. 9, no.3, Nov.2012,
pp.224-229

[61] M. Rossi, G. Zanca, L. Stabellini, R. Crepaldi, A. F. H. III, and
M. Zorzi, “SYNAPSE: A Network Reprogramming Protocol
for Wireless Sensor Networks using Fountain Codes,” in
Proc. of IEEE SECON, June.2008, pp. 188 – 196

IJSER

http://www.ijser.org/
http://www.waikato.ac.nz/php/research.php?mode=show&author=2009457
http://www.waikato.ac.nz/php/research.php?mode=show&author=86579
http://www.waikato.ac.nz/php/research.php?mode=show&author=86579
http://www.waikato.ac.nz/php/research.php?mode=show&author=86579
http://www.waikato.ac.nz/php/research.php?mode=show&author=86579

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 1218
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

[62] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming Wireless
Sensor Networks: Challenges and Approaches,” IEEE Net-
work, vol. 20, no. 3, May/June 2006. pp. 48-55

[63] M. Yarvis, N. Kushalnagar, H. Singh, A. Rangarajan, Y. Liu,
and S. Singh, "Exploiting Heterogeneity In Sensor Net-
works," in Proceedings IEEE 24th Annual Joint Conference of the
IEEE Computer and Communications Societies. Miami vol.2,
March.2005, pp. 878-890

[64] C.Frank and K.Römer, “Algorithms for Generic Role Assign-
ment In Wireless Sensor Networks,” Proceedings of the 3rd in-
ternational conference on Embedded networked sensor systems,
2005, pp.230-242

IJSER

http://www.ijser.org/

	1 Introduction
	2 Requirements for Sensor network programming
	2.1 Scalability
	2.2 Localization
	2.3 Failure-Resilience
	2.4 Energy-Efficiency
	2.5 Collaboration
	2.6 Time Synchronization

	3 Programming Approaches for WSNs: A Taxonomy
	3.1 Node-Level Abstraction

	3.3 Network-Level Abstraction
	4 Analysis and Evaluation
	5 Future Research Directions and Programming Challenges for Wireless Sensor Networks
	6. Conclusion

	References

